电化学原理和应用 薛卫东

本课程面向硕士研究生,系统讲述电解质溶液和双电层理论、电极过程动力学、电化学研究方法等。使学生掌握现代电化学的基本理论、基本原理,及在材料科学、生命科学、能源科学及环境科学等领域的应用。电化学原理和应用是化学工程与技术学科、能源科学、材料制备及分析等的专业基础课程,其知识与方法对于学生今后从事化学及相关学科的工作十分重要。同时通过理论联系实际,可使研究生掌握更坚实宽广的基础理论和系统深入的专门知识,以适应当今社会对电化学专门人才的需求。

课程概述

电化学是一门理论和实践结合紧密的学科,是化学电源、电子电镀、传感器、光电转换器件等研究领域的主要基础理论,又是与新能源、电子材料、生物医学等前沿科学领域息息相关的学科,适合选课专业除了化学、材料等专业外,还可是基础院、电子、光电、物电、医学等多个学院的相关专业的硕士、博士研究生,通过对电化学理论和应用的学习与应用,可对相关专业的学科建设和人才培养有所帮助。

考核要求
预备知识

选修本课程的学生应具备化学、物理和材料相关的基础知识。

授课大纲

03045003《电化学原理和应用》教学大纲

 

课程编号

03045003

课程中文名称

电化学原理和应用

学时

40

课程性质

■ 学位课

□非学位课

□其他

课程英文名称

Principle and Application of Electrochemistry

学分

2

开课时间

■春

□秋

适用学科(类别)

材料科学与工程、化学工程与技术、材料工程

适用学生

■硕士

□博士

先修课程

物理化学、高等无机化学

开课单位

材料与能源学院

大纲撰写人

王翀

大纲审稿人

薛卫东

()定时间

2019.07

一、教学目标

本课程系统的讲述了电解质溶液和双电层理论、电极过程动力学、电化学研究方法等。使学生掌握现代电化学的基本理论、基本原理,及在材料科学、生命科学、能源科学及环境科学等领域的应用。电化学原理和应用是化学工程与技术学科、能源科学、材料制备及分析等的专业基础课程,其知识与方法对于学生今后从事化学及相关学科的工作十分重要。同时通过理论联系实际,可使研究生掌握更坚实宽广的基础理论和系统深入的专门知识,以适应当今社会对电化学专门人才的需求。

二、教学内容与要求

绪论(1学时)

1 本章教学内容:介绍电化学的发展历史,电极过程动力学理论的建立背景,电化学在科学技术发展中所起的作用,电化学研究方法及应用等。(1学时)

2 本章教学要求:通过本章课程的学习,要求学生理解电化学的学习目的和方法,掌握电化学的发展历史,及主要研究方法和手段。

第一章:电解质及其传质理论(8学时)

1 本章教学内容:(1)电解质溶液的几个基本概念(3学时),(2)扩散——离子在化学势梯度作用下的运动(5学时)。

2 本章教学要求:通过本章课程的学习,要求学生(1)了解电解质溶液的几个基本概念;了解活度、活度系数等静态性质,及电解质的电离、电导特性。(2)了解稳态扩散的物理模型;理解电极表面附近的液流现象及传质作用、扩散层的有效厚度、对流扩散的动力学规律。

3 本章教学重点:电解质溶液的概念、化学电离与物理电离的异同、影响电解质导电能力的因素、离子水化作用对电解质导电能力的影响、电场对电解质电导的影响;稳态扩散的物理模型与动力学规律、非稳态扩散的物理模型与动力学规律。

4 本章教学难点:(1)非水溶液的离子化作用与电导率,(2)非稳态扩散的物理模型与动力学规律。

作业:

旋转圆盘电极表面附近液层的扩散模型及扩散动力学规律如何?

本章课堂讨论题目一:固体电解质的概念、导电机理及其应用前景。

讨论要求:重点围绕固体电解质如何导电、导电机理、目前在应用薄膜锂电池、化学传感器光敏元器件等领域的应用展开讨论。

本章课堂讨论题目二:非水溶液及其在电化学装置中的应用。

讨论要求:主要讨论离子液体体系在电势窗口、非水电解质,以及在锂离子电池和超级电容器中的应用进展。

第二章:电极界面及双电层理论(7学时)

1 本章教学内容:(1)电极界面及双电层理论概述(2学时),(2)电毛细现象(2学时),(3)双电层的微分电容(2学时),(4)双电层的结构(2学时),(5)零电荷电位(1学时)

2 本章教学要求:通过本章课程的学习,要求学生了解研究电极/溶液界面性质的意义;了解理想极化电极性质与条件;了解电极表面吉布斯吸附等温式,建立相对吸附量与界面张力的定量关系。了解电毛细曲线及其测定方法;了解离子表面剩余量的计算方法及原理。了解微分电容的定义,了解电毛细曲线及其测定方法,了解双电层的微分电容及其测量方法。掌握电极与溶液介面间电位差,电毛细现象,双电层的结构模型,零电荷电位及半导体电极与溶液介面间的双电层结构等。了解零电荷电位的定义、测定方法、用途,通过引起相间电位的四种情况,了解零电荷电位不在氢标电位零点的原因,进一步认识剩余电荷对相间电位的影响。

3 本章教学重点:(1)理想极化电极的概念与模型、吉布斯吸附等温式的推导与应用,(2)电毛细曲线测量方法及原理图、电毛细方程推导与讨论、离子表面剩余量的数学表达式的推导;(3)双电层电容的特性、微分电容的测定原理与方法、双电层微分电容曲线的特点;(4)电极/溶液界面相间的相互作用、斯特恩双电层静电模型的建立及局限性、BDM双电层结构的紧密层模型的建立与应用、特性吸附的类型与特征;(5)零电荷电位的测定方法、零电荷电位的用途、零标电位的定义及与氢标电位的关系。

4 本章教学难点:(1)双电层的结构模型,(2)电毛细曲线和微分电容曲线与双电层结构的关系。

作业:

1)电导电极为何要镀铂黑?类型:平时作业

2)如何确定双电层的结构模型的准确性?类型:平时作业

本章课堂讨论题目一:超级电容器的原理及其应用。

讨论要求:针对双电层的结构,探讨超级电容器容量增大的方法和途径,并且认识影响超级电容器容量、功率和循环性能的本质。

第三章:电极过程动力学(4学时)

1 本章教学内容:(1)电极过程动力学概述(2学时),(2)电化学控制步骤的动力学(2学时),(3)金属的阳极极化过程(2学时)。

2 本章教学要求:通过本章课程的学习,要求学生了解电极过程的特征及研究方法;理解电极过程的机理及速度控制步骤;了解电化学步骤的动力学模型及结论;理解稳态电化学极化规律;掌握电极过程动力学方程的建立,电极过程与控制步骤,电极反应与交换电流,浓差极化方程式,电化学与浓差极化同时存在的极化曲线,电化学可逆过程与不可逆过程;了解金属的阳极过程及其腐蚀现象,了解化学钝化与电化学钝化的内在关联性,了解金属表面钝化的成相膜理论和吸附理论,了解金属的自溶解过程及其影响因素。

3 本章教学重点:(1)电极过程的特征与研究方法、电极过程的基本步骤(机理)、电极过程的速度控制步骤、非控制步骤的近似处理方法——准平衡态;(2)电极电位对电化学步骤反应速度的影响、改变电极电位对电化学步骤活化能的影响、稳态电化学极化的基本规律、浓差极化对电化学步骤反应速度和极化曲线的影响、界面相间电位分布对电化学步骤反应速度的影响;(3)金属的阳极溶解及其极化规律、金属的表面钝化现象及其钝化机理、金属的自溶解过程。

4 本章教学难点:(1)电极过程的机理及速度控制步骤,(2)电化学与浓差极化同时存在的极化曲线,(3)稳态电化学极化的规律。

作业:

1)在Fe2+Fe3+离子溶液体系中浸入铂电极,其电极电位对电子的位能有何影响。类型:平时作业

2)简述金属钝化机理的成相膜理论和吸附理论的基本观点与实验依据。 类型:平时作业

本章课堂讨论题目一:重防腐材料及其防腐机理。

讨论要求:讨论重防腐涂料的种类、原理及配比,以及今后从环保角度重点应向水性重防腐材料、无溶剂防腐材料方向发展。

第四章 电化学研究方法(14学时)

1 本章教学内容:(1)稳态与暂态过程(2学时),(2)稳态极化的测量(2学时),(3)暂态研究方法(10学时)。

2 本章教学要求:通过本章课程的学习,要求学生了解稳态的意义及稳态系统的特点,了解稳态电流的产生原因及物理意义,了解暂态电流的类型及产生原理。了解按控制方式进行稳态极化测量方法的分类,了解恒电流法和恒电势法的原理、特点及应用范围。了解稳态的意义及稳态系统的特点,各种类型的极化和过电位,各种极化的特点与影响因素,流体动力学的稳态研究方法,极化曲线的测量方式,测量稳态曲线的意义,多孔电极的稳态极化,暂态电流。电极的等效电阻,电化学反应电阻,溶液的浓差阻抗、电路描述码(CDC)、电极等效电路的简化与解析、几种典型阻抗的等效电路、复数平面图解法。掌握控制电位法和控制电流法,电位阶跃——计时电流法与计时电量法;电位扫描法——线性电位扫描法,循环伏安法;旋转园盘电极、旋转环盘电极法,交流阻抗法,电流阶跃法。

3 本章教学重点:(1)电化学研究方法的类型与范围、稳态系统的条件、法拉第电流与非法拉第电流;(2)稳态极化测量方法的分类、稳态极化测量方法的特点;(3)暂态测量方法的优点、电势阶跃下的电化学反应——控制电位技术、电位扫描下的电化学反应——电位扫描技术、控制电流下的电化学反应——恒电流电解技术和交流阻抗测量方法与特点等。

4 本章教学难点:(1)流体动力学模型的稳态研究方法,(2)等效电路的表示方法——电路描述码。

作业:

1)什么是合理的等效电路。 类型:平时作业

2)用电路描述码表示等效电路的原则是什么,试举例说明。 类型:平时作业

本章课堂讨论题目一:电化学工作站的原理与实践。

讨论要求:先由重点讲解瑞士万通电化学工作站的结构、原理及其测试中的问题。同学们根据之前应用时遇到的测试问题、图形问题、电极处理等问题进行研讨。

第五章 电化学实验设计(6学时)

1 本章教学内容:(1) 极谱干扰电流及其消除方法(2学时),(2) 伏安法的特征与特殊条件(2学时),(3)循环伏安法的原理与应用(2学时)。

2 本章教学要求:通过本章课程的学习,要求学生了解伏安分析法的历史、分类;了解极谱分析法的基本原理、装置、极谱波的种类、极谱波方程,了解几种新极谱和伏安分析法。掌握极谱干扰电流及其残余电流、迁移电流、极谱极大、氧波、氢波等消除;掌握极谱定量分析方法和循环伏安法的应用。

3 本章教学重点:(1)极谱分析法的基本原理、极谱波的种类和极谱波方程;(2)极谱干扰电流及其残余电流、迁移电流、极谱极大、氧波、氢波等消除方法。

4 本章教学难点:(1)极谱定量分析方法,(2)循环伏安法的应用。

作业:

1)了解电化学工作站的结构和应用范围,自选一电化学体系测定其伏安曲线。类型:平时作业

2)试根据电化学原理设计一测定扩散系数的方法。类型:平时作业

本章课堂讨论题目一:锂电池及其电解液的研究进展。

讨论要求:对于锂离子电池正极活性材料为什么是过渡族金属盐、碳负极材料包覆改性、SEI膜的形成机理及对容量的影响等问题进行讨论。

第七章 电化学应用(0学时)

1 本章教学内容:(1) 光电化学电池的结构与性能(自学),(2) 电化学新能源体系锂离子电池(自学)。

2 本章教学要求:本章以专题的形式介绍我院科研过程中电化学的应用情况。主要了解电化学新能源体系锂离子电池、光电化学电池的结构与性能,了解电化学传感器的构造与原理,了解金属的表面精饰和材料的电化学的制备的方法。

3 本章教学重点:(1)电化学新能源体系锂离子电池,(2)光电化学电池的结构与性能。

作业:

1)光电化学电池的原理与应用前景。 类型:课堂讨论

2)锂离子电池的性能特点与应用现状。 类型:课堂讨论

三、教学方式

1.以课堂讲授为主,重点讲授电化学的主要理论,并辅以各种电化学的应用领域的最新学术进展、关键问题进行理论联系实际的讲解。

2.根据最新电化学技术发展动向,在课内对新能源等相关主题展开4-6次课堂研讨活动,激活学生的学习兴趣及学习自主性。

四、考核方式与成绩评定

课程考核方式为考试,采取堂上开卷笔试的方式。

成绩评定的考核比例为:

1)过程考核占30 %,包括:

考勤:5%,课堂互动:15 %,平时作业:10%

2)期末考核占70%

五、教材及主要参考书目

教材:

[1]电化学方法原理及应用(第二版)》,[]A.J.巴德,L.R.福克纳编著,化学工业出版社,2005

参考书目:

[1]电化学原理》,李荻编著,北航出版社,2008

[2]《电化学(第二版)》,C.H.哈曼编著,化工出版社,2009

[3]《电极过程动力学》,査全性编著,科学出版社,2002

[4]《应用电化学》,贾梦秋、杨文胜主编,高等教育出版社,2004

 


03045003 Syllabus of Principle and Application of Electrochemistry

Course Code

03045003

Course Name

Principle and Application of Electrochemistry

Class

Hours

40

Course Nature

Degree

Non-DegreeOthers

Credit

2

Semester

(  )Fall/(P)Spring

Students

(P)Master/(  )Ph.D

Discipline

Materials Science and Engineering, Chemical Engineering and Technology, Materials Engigeering

Prerequisites

Physical Chemistry, Advanced Inorganic Chemistry

School

Materials and Energy

Written by

Chong Wang

Reviewed by

Weidong Xue

Date

July, 2019

 

1.    Course Objectives

This course systematically describes electrolyte solution and electric double layer theory, electrode process kinetics, and electrochemical research methods. To enable students to master the basic theories and basic principles of modern electrochemistry, and applications in materials science, life sciences, energy sciences and environmental sciences. The principle and application of electrochemistry are specialized basic courses for master candidates in chemical engineering and technology, energy science, material science and engineering. These knowledge and methods are important for students to work in chemistry, materials and related disciplines in the future. At the same time, through theory and practice, master candidates can develop more solid and broad basic theories and systematic in-depth expertise to meet the needs of today's society for electrochemical professionals.

2.    Course Content and Requirements

Chapter 1: Introduction (1 class)

1 Content: Brief history of electrochemistry, background of the establishment of electrode kinetics theory, the role of electrochemistry in science and technology, electrochemical research methods and applications. (1 class)

2 Teaching requirements: Through the study of this chapter, students are required to understand the learning objectives and methods of electrochemistry, master the history of electrochemistry, and the main research methods and means.

Chapter 2: Electrolytes and Mass Transfer Theory (8 classes)

1 Contents of this chapter: (1) Basic concepts of electrolyte solution (3 classes), (2) diffusion - ions transfer under the action of chemical potential gradient (5 classes).

2 Teaching requirements: Students are required to (1) understand the basic concepts of electrolyte solution; understand the static properties such as activity and activity coefficient, and the ionization and conductivity characteristics of electrolytes. (2) Understand the physical model of steady-state diffusion; understand the liquid flow phenomenon and mass transfer effect near the electrode surface, the effective thickness of the diffusion layer, and the kinetic function of convective diffusion.

3 Key points: the concept of electrolyte solution, the similarities and differences between chemical ionization and physical ionization, the factors affecting the conductivity of electrolytes, the influence of ion hydration on the conductivity of electrolytes, the influence of electric field on electrolyte conductance; the physical model of steady-state diffusion and Dynamic laws, physical models and dynamic laws of unsteady diffusion.

4 Teaching difficulties: (1) ionization and conductivity of non-aqueous solutions, and (2) physical model and kinetics of non-steady-state diffusion.

Homework:

What is the diffusion model and diffusion dynamics of the liquid layer near the surface of the rotating disk electrode?

In Class discussion topic 1: The concept of solid electrolyte, the conductive mechanism and its application prospects.

Discussion requirements: Focus on how solid electrolytes conduct electricity, conductive mechanisms, and applications in the field of thin-film lithium batteries and chemical sensor photosensitive components.

In Class discussion topic 2: Non-aqueous solutions and their applications in electrochemical devices.

Discussion requirements: Mainly discuss the progress of ionic liquid systems in electrochemical windows, non-aqueous electrolytes, and in lithium-ion batteries and super capacitors.

Chapter 3: Electrode interface and electric double layer theory (9 classes)

1 Contents of this chapter: (1) Overview of electrode interface and electric double layer theory (2 classes), (2) electric capillary phenomenon (2 classes), (3) differential capacitance of electric double layer (2 classes), (4) double Structure of the electric layer (2 classes), (5) Zero charge potential (1 classes)

2 Teaching requirements: Students are required to understand the significance of the properties of the electrode/solution interface; understand the properties and conditions of the ideal polarized electrode; understand the Gibbs isotherm adsorption on the electrode surface, and to establish the relative adsorption amount interfacial tension, and quantitative relationship. Understand the electric capillary curve and its determination method; understand the calculation method and principle of the residual surface of the ion surface. Understand the definition of differential capacitance, understand the electric capillary curve and its measurement method, and understand the differential capacitance of the electric double layer and its measurement method. Master the potential difference between the electrode and the solution interface, the electro-capillary phenomenon, the structural model of the electric double layer, the zero charge potential and the electric double layer structure between the semiconductor electrode and the solution interface. Understand the definition, measurement method and use of zero charge potential, and understand the reason why the zero charge potential is not at the zero point of the hydrogen target potential by causing the four cases of phase potential, and further understand the influence of residual charge on the phase potential.

3 Key points of this chapter are: (1) the concept and model of ideal polarized electrodes, the derivation and application of Gibbs isotherm adsorption, (2) the measurement method and schematic diagram of electric capillary curve, the derivation and discussion of electric capillary equations, and the remaining surface of ions The derivation of the mathematical expression of the quantity; (3) the characteristics of the electric double layer capacitor, the principle and method of measuring the differential capacitance, the characteristics of the electric double layer differential capacitance curve; (4) the interaction between the electrode/solution interface phase, Stern model and its limitation in electric double layer, the establishment and application of the compact layer model of the BDM electric double layer structure, the type and characteristics of the characteristic adsorption; (5) The measurement method of the zero charge potential, the use of the zero charge potential, the zero mark The definition of the potential and the relationship with the potential of the hydrogen standard.

4 Teaching difficulties: (1) structural model of electric double layer, (2) relationship between electric capillary curve, differential capacitance curve and structure of electric double layer.

Homework:

(1) Why black Pt is plated on the conductivity electrode?

(2) How to determine the accuracy of the structural model of the electric double layer?

In class discussion topic: the principle and application of super-capacitors.

Discussion requirements: For the structure of the electric double layer, explore the methods and ways to increase the capacity of super-capacitors, and understand the nature of the capacity, power and cycle performance of super-capacitors.

Chapter 4: Electrode kinetics (6 classes)

1 Contents of this chapter: (1) Overview of electrode kinetics (2 classes), (2) Kinetics of electrochemical control steps (2 classes), (3) Anodic polarization of metals (2 classes).

2 Teaching requirements: Students are required to understand the characteristics and research methods of the electrode kinetics; understand the mechanism and speed control steps of the electrode process; understand the kinetic model and electrochemical control step; understand the steady-state electrochemical polarization Law; master the establishment of electrode kinetics equation, electrode process and control steps, electrode reaction and exchange current, concentration polarization equation, polarization curve of simultaneous electrochemistry and concentration polarization, electrochemical reversible process and irreversible process Understand the metal anode process and its corrosion phenomenon, understand the intrinsic correlation between chemical passivation and electrochemical passivation, understand the phase-forming membrane theory and adsorption theory of metal surface passivation, and understand the self-dissolving process of metals and its influencing factors.

3 Teaching focus of this chapter: (1) Characteristics and research methods of electrode processes, basic steps (mechanism) of electrode processes, speed control steps of electrode processes, approximate treatment methods of non-control steps - quasi-equilibrium states; (2) electrode potentials The influence of the reaction rate on the electrochemical step, the effect of changing the electrode potential on the activation energy of the electrochemical step, the basic law of the steady state electrochemical polarization, the influence of the concentration polarization on the reaction speed and the polarization curve of the electrochemical step, and the interfacial phase The influence of the potential distribution on the reaction speed of the electrochemical step; (3) the anodic dissolution of the metal and its polarization law, the surface passivation phenomenon of the metal and its passivation mechanism, and the self-dissolving process of the metal.

4 Teaching difficulties: (1) Electrode process mechanism and speed control steps, (2) Electrochemical and concentration polarization simultaneous polarization curves, (3) Steady-state electrochemical polarization law.

Homework:

(1) A Pt electrode is placed in Fe2+ and Fe3+ ion solution, how the electrode potential affects the potential energy of the electrons.

(2) Briefly describe the basic theory and experimental basis of the phase-forming membrane theory and adsorption mechanism of the metal passivation.

In class discussion topic: heavy duty anti-corrosion materials and their anti-corrosion mechanism.

Discussion requirements: Discuss the types, principles and proportions of heavy-duty anti-corrosion coatings, and the future development of water-based heavy-duty anti-corrosion materials and solvent-free anti-corrosion materials.

Chapter 5 Electrochemical Methods (6 classes)

1 Contents of this chapter: (1) steady state and transient process (0.5 class), (2) measurement of steady state polarization (0.5 class), (3) transient research method (5 classes).

2 Teaching requirements: Students are required to understand the meaning of steady state and the characteristics of steady-state system, understand the cause and physical meaning of steady-state current, and understand the type and principle of transient current. Understand the classification of steady-state polarization measurement methods by control method, and understand the principle, characteristics and application range of constant current method and constant potential method. Understand the meaning of steady state and the characteristics of steady-state systems, various types of polarization and overpotential, characteristics and influencing factors of various polarizations, steady-state research methods of fluid dynamics, measurement methods of polarization curves, and measurement stability of the state curve, the steady state polarization of the porous electrode, and the transient current. The equivalent resistance of the electrode, the electrochemical reaction resistance, the concentration impedance of the solution, the circuit description code (CDC), the simplification and resolution of the electrode equivalent circuit, the equivalent circuit of several typical impedances, and the complex plane diagram method. Master control potential method and control current method, potential step - chronoamperometry and chronoelectric method; potential scanning method - linear potential scanning method, cyclic voltammetry; rotating disk electrode, rotating ring disk electrode method, AC impedance Method, current step pulse method.

3 Key points of this chapter are: (1) the type and scope of electrochemical research methods, the conditions of steady-state systems, the Faraday current and the illegal pull current; (2) the classification of steady-state polarization measurement methods, the characteristics of steady-state polarization measurement methods (3) Advantages of transient measurement methods, electrochemical reactions under potential step - control potential technique, electrochemical reaction under potential scanning - potential scanning technique, electrochemical reaction under controlled current - constant current electrolysis Technical and AC impedance measurement methods and features.

4 Teaching difficulties in this chapter: (1) Steady-state research methods of fluid dynamics models, (2) Representation methods of equivalent circuits - circuit description codes.

Homework:

(1) What is a reasonable equivalent circuit?

(2) What is the principle of using the circuit description code to represent the equivalent circuit?

In class discussion topic: the principle and practice of electrochemical workstations.

Discussion requirements: First, focus on the structure, principle and problems in the testing of Metrohm Electrochemical Workstation. The students discussed the problems encountered in the previous application, such as test problems, graphic problems, and electrode treatment.

Chapter 6 Voltammetric Analysis and Its Application (6 classes)

1 Contents of this chapter: (1) Polarographic interference current and its elimination method (2 classes), (2) Characteristics and special conditions of voltammetry (2 classes), (3) Principle and application of cyclic voltammetry (2 classes).

2 Teaching requirements: Students are required to understand the history and classification of voltammetric analysis; understand the basic principles, devices, polar wave types, polarographic wave equations of polarographic analysis, and learn about several new poles. Spectral and voltammetric analysis. Master the polarographic interference current and its residual current, migration current, polarographic maximum, oxygen wave, hydrogen wave, etc.; master the application of polarographic quantitative analysis method and cyclic voltammetry.

3 Key points of this chapter are: (1) the basic principles of polarographic analysis, the types of polarographic waves and the polarographic wave equation; (2) the polarographic interference current and its residual current, the migration current, the polar spectrum, the oxygen wave, A method of eliminating hydrogen waves or the like.

4 Teaching difficulties in this chapter: (1) polarographic quantitative analysis method, (2) application of cyclic voltammetry.

Homework:

(1) Understand the structure and application range of the electrochemical workstation, and determine its volt-ampere curve by an electrochemical system.

(2) Design a method for determining the diffusion coefficient according to the principle of electrochemistry.

In class discussion topic: research progress of lithium batteries and their electrolytes.

Discussion requirements: Why the positive active material of lithium ion battery is the transition metal salt, the coating modification of carbon negative electrode material, the formation mechanism of SEI film and the influence on capacity.

Chapter 7 Electrochemical Applications (4 classes)

1 Contents of this chapter: (1) Structure and performance of photoelectrochemical cell (2 classes), (2) Electrochemical new energy system, lithium ion battery (2 classes).

2 Teaching requirements: This chapter introduces the application of electrochemistry in the research process of our institute in the form of special topics. Mainly understand the structure and performance of lithium ion battery and photoelectrochemical cell in electrochemical new energy system, understand the structure and principle of electrochemical sensor, and understand the surface finish of metal and the electrochemical preparation method of material.

3 Key points: (1) lithium-ion battery for electrochemical new energy system, and (2) structure and performance of photoelectrochemical cell.

Homework:

(1) Principles and application prospects of photoelectrochemical cells.

(2) Performance characteristics and application status of lithium ion batteries.

3.    Teaching Methods

1. Classroom lectures

2. 4-6 times in class discussions.

4.    Evaluation and Grading

The evaluation is the opening examination in classroom.
The assessment ratio of the score is:
(1) Process assessment accounts for 30%, including:
Attendance: 5%,  in class discussion: 15%,  homework: 10%.
(2) The final examination accounted for 70%.

 

5.    Teaching Materials &References (Including Author, Title, Publisher and Publishing Time)

[1] A.J. Bard, Electrochemical Methods Fundamentals and Applications,” 2nd Edition, John Wiley & Sons Inc., Hoboken, 2001.

[2] John Newman, Karen E. Thomas-Alyea, Electrochemical Systems, 3rd Edition, Wiley-Interscience, 2004.

[3] Carl H. Hamann, Andrew Hamnett, Wolf Vielstich, Electrochemistry, 2nd Edition, Wiley-VCH, 2007.

 

参考资料

教材:

[1]电化学方法原理及应用(第二版)》,[]A.J.巴德,L.R.福克纳编著,化学工业出版社,2005年。

链接:http://222.197.165.70:8181/Jpath_sky/DsrPath.do?code=8D6738CD964A9E03ABBE38C4A2986979&ssnumber=10655657&netuser=1&jpgreadmulu=1&displaystyle=0&channel=0&ipside=0


参考书目:

[1]电化学原理》,李荻编著,北航出版社,2008年。

链接:http://222.197.165.70:8080/BookInfo.jsp?BID=10310987

[2]《电化学(第二版)》,C.H.哈曼编著,化工出版社,2009

[3]《电极过程动力学》,査全性编著,科学出版社,2002

[4]《应用电化学》,贾梦秋、杨文胜主编,高等教育出版社,2004年。

链接:http://222.197.165.70:8080/BookInfo.jsp?BID=11352105

开课信息
2023-2024-2学期
学生名单 自动生成
课程已进行至
12/20周
开课:2024年02月26日 00:00:00
结束:2024年07月14日 00:00:00
课程信息
课程时长:
课程负载:
内容类型:
课程分类:
任课教师
姓名相片职称
薛卫东 教授
选课学生
学期学期类别选课人数
2023-2024-2学期 自动生成 118
2020-2021-2学期 自动生成 70
2019-2020-2学期 自动生成 1
信息中心

成都市高新区(西区)西源大道2006号

沙河校区:成都市建设北路二段四号

028-61831184

info.uestc.edu.cn

教育技术部

成都市高新区(西区)西源大道2006号

沙河校区:成都市建设北路二段四号

028-61831186

info.uestc.edu.cn